Primary and Secondary Prevention of Fetal Death Caused by Infection and/or Inflammation

JA McGregor^{1,2}, JI French¹, M Perhach² Affiliations: ¹LA Best Babies Network; ²Group B Strep International

"Prevention is better than cure" — Desiderius Erasmus

ABSTRACT

Introduction/Background: Preventable reproductive tract infections are increasingly recognized as direct causes of death in the 20% to 40% of fetal deaths and stillbirths worldwide. Objective: Develop "gedanken" (thought-based) strategies to prevent infection caused fetal loss. Methods: Medical knowledge review and synthesis. Perinatal lethal infections are known to be caused by various potentially preventable pathways: 1) Bloodborne (via maternal circulation) infection of placental tissues, umbilical cord, amniotic fluid, 2) ascending infection through the cervix, decidua, and amniochorion, 3) iatrogenic infection (amniocentesis, membrane stripping), 4) preexisting (prepregnancy) endometrial infections, and 5) zoonic bloodborne infections. More recently recognized or unfamiliar "pathogenic pathways" include 1) combined bacterial and viral infections in which viral infection or maternal-fetal "mismatch" sensitized the placenta to the effects of LPS (lipopolysaccharide), 2) "graft vs. host" phenomena by which prior infections could amplify production of HSPs (Heat Shock proteins) and other "immune molecules", and 3) sterile inflammation or "autophagic" stimuli (caused by small particles or increased cell death from any cause. Results/Discussion: Successful primary and secondary prevention strategies include: 1) recognition and documentation of stillbirth; implicated microorganisms, 2) development of simple, inexpensive, accurate means to identify causal agents and boost host response mechanism, 3) formulate means to prevent infections, such as GBS and/or STI pregnancy infections, 4) recognize how systematic vaccination programs may prevent intrauterine infections (influenza, measles, rubella), and 5) formulate evidence-based strategies to systematically prevent infection-caused late miscarriage, stillbirth, or neonatal infection.

AIMS

- 1) Review recognized infection causes of FD in differing geographic regions.
- 2) Recognize clinically under-appreciated "pathophysiologic pathways" which may lead to locally important causes of FD
- 3) Comprehend newly recognized lethal organismal and cellular lethal processes
- 4) Identify different medical and non-medical approaches or processes which may be used to reduce risks of prevalent causes of FD
- 5) Focus on opportune clinical and public health research areas ("low hanging fruit") which may be practicably utilized to reduce risk of prevalent I-I caused FD
- 6) Review evidence-based primary preventive strategies which have been used effectively, but appear under appreciated or under used.

Table 1. Death Mechanisms of Processes, **Not Commonly Recognized**

Direct cell death: toxin, physical, chemical final product of apoptosis
Programmed cell death
Self digestion ^{7,11}
Several pathways leading to organismal death
Fetal-maternal conflict9
Death - signaling by aging

Table 2. Proposed Inflection Pathways to Fetal Death

Name	Mode of Transmission
Maternal "Traditional"	Bloodborn, ascending through cervix, persistent endometrial infection
Iatrogenic	Amniocentesis, membrane sweeping, prolonged induction
Complex	Viral infection "sensitizing" to LPS ¹⁰
Immunologic	Graft vs Host "maternal/fetal rejection"
Gamete-based	Infected sperm or ovum (bacteria, viruses, prions, transposons) In vitro contaminated

1aternal "Traditional"	Bloodborn, ascending through cervix, persistent endometrial infection
atrogenic	Amniocentesis, membrane sweeping, prolonged induction
Complex	Viral infection "sensitizing" to LPS ¹⁰
mmunologic	Graft vs Host "maternal/fetal rejection"
Samete-based	Infected sperm or ovum (bacteria, viruses, prions, transposons) In vitro contaminated

many populations. Recently both national (CDC-P) and international agencies (WHO)

METHODS

BACKGROUND

 Review and analysis of available research indexed in Medline, PubMed, and/or Cochrane data bases for the topics: "infection", "stillbirth", "fetal death", "inflammation", and "sepsis" or "septic"

FD or stillbirth (SB) is increasingly recognized to be caused by potentially preventable

infection causes 40% to 20% of fetal deaths in developing and developed countries

respectively. Review of possible opportunities for evidence-based clinical,

maternal infections and associated inflammation. McClure and Goldenberg maintain that

pathophysiological and epidemiologically based preventive strategies is required to allow

for clinical opportunities for reducing risks of FD which remain persistently as high as 1% in

have focused attention on identifying recognized and "novel" or "emerging" causes of fetal

death, so as to reduce the "burdens" of this often ignored or marginalized cause of death.

- Analysis of relatively recently recognized biologic mechanisms of lethality available databases using the key words: "death program", "lethal programming", "killing" as well as "apoptosis", "programmed cell death" and "autophagy". Along with "surviving sepsis", "sepsis", "infection and inflammation" and "death". Construct an "action matrix" each common and "important" infectious process with possibly effective
- means of 1° prevention. • Focus on group B streptococcus (GBS) as a cause of morbidity which may be further prevented by
- utilization of possible new technologies, i.e., microbiologic "rapid" diagnosis and "point of care" (POC) diagnostic and complementary immunologic approaches i.e., vaccination.^{2,3}

PREVENTION DEFINITIONS:

- 1º Prevent exposure,
- 2° Detect early (Screen, treat),
- 3° Mitigate damage (rehabilitation)
- 4° Systematically reduce damaging phenomena (policy)

RESULTS

There is considerable information available regarding infection caused FD. More recently, understood death mechanisms are listed in Table1. Proposed traditional and novel infection pathways to FD are listed in Table 2. Selected important microorganisms associated with possible means for 1° prevention are listed in Table 3.

Table 3. Common and Important Pregnancy Infections Amenable to Primary Prevention

Virus	Vaccine	Behavioral	Medical
Varicella	\checkmark		
Influenza	\checkmark		\checkmark
Mumps	\checkmark		
Rubella	\checkmark		
Parvovirus	\checkmark	\checkmark	
HIV		\checkmark	
CMV		\checkmark	
Bacteria			
GBS			\checkmark
Listeria		\checkmark	
Protozoal			
Toxoplasmosis		\checkmark	
Malaria		\checkmark	\checkmark

GBS associated FD is an example of possible Primary Prevention of infection FD

- 1) Epidemiologic Research. Means to prevent GBS caused early neonatal sepsis and death have focused on strategies intended to reduce exposure at birth by IAP. That this "dogma" is incorrect and that GBS can be an important preventable cause of FD has been highlighted by Katz, Wendel, and McDonald who described convincing evidence of GBS crossing intact fetal membranes and causing FIRS or perinatal depression or death.^{4,5} Measurement of this phenomenon requires large epidemiologic surveillance such as in available through the CDC-P, ABC program and an advanced population surveillance program such as in Ontario, Canada.
- 2) Quality Improvement Approaches to preventing GBS FD. It has been shown by Thomsen et al that screening for GBS UTI/ASB and treatment reduces risks of loss, as well as PROM and PTB.⁶ This observation has not been followed up with large well controlled experiments. Specific culture screening for UTI/ASB is recommended by the USPSTF but not ACOG.
- 3) Technologic Advances in Identifying GBS Presence^{13,14} are now available for evaluation (microfluidics, rapid antigen/nucleic acid systems). These may be shown to be useful as rapid, "Point of Care" (POC) techniques which could be used to more rapidly exclude GBS presence, and thus avoid unneeded antibiotic treatment, as well as other uses to benefit mothers, babies and adults.
- 4) New Treatment Modalities for GBS Disease may include defensins (cationic membrane-active proteins) and peptides (such as occurs naturally in vernix and vaginal fluid) as well as various probiotics.
- 5) New Clinical Diagnostic Systems are now available for GBS infection which can be used in expanded, non-technical settings. 14
- 6) Vaccination Strategies as proposed by Baker and Kasper may provide protection against prenatal onset GBS disease (PO-GBS-EOS). A recent modeling study estimated that GBS vaccination could prevent 4% of U.S. preterm births and 60-70% perinatal disease. Maternal immunization is already routine for tetanus, pertussis, HBV and influenza. Other possible advances include:
 - a. Maternal micronutrient supplementation
 - b. Augmented provider, payor, patient, community education and
 - c. Quality control research, as well as
 - d. Refined antimicrobial primary prevention strategies (in long acting antibiotic preparations, oral treatment)

RECOMMENDATIONS

- 1) The Burdens of Infection-caused FD or stillbirth need to be systematically studied using epidemiologic, pathologic and public health techniques.
- 2) Behavioral, medical and vaccine-mediated primary prevention of FD needs to be including in public policy prevention guidelines including PAY FOR PERFORMANCE GUIDELINES
- 3) Advance technologies including vaginal pH screening and microfluidic diagnostic techniques need to be systematically researched in large controlled trials.
- 4) Effective diagnostic pathology services/approaches for FD (including "placental triage" verbal autopsy and complete contemporary autopsy service should be made available

REFERENCES

- McClure EM, Goldenberg RL. Infection and Stillbirth. Semin Fetal Neonatal Med 2009; 14:182-9.
- Lachenauer CS, Baker CJ, Baron MJ, Kasper DL, Gravekamp C, Madoff LC. Quantitative determination of immunoglobulin G specific for group B streptococcal beta C protein in human maternal serum. J Infect Dis, 2002;185:368-74.
- Fischer GW. Immunoglobulin therapy of neonatal group B streptococcal infections: an overview. Peadiatr Infect Dis J 1988;7(5 Suppl):S13-6.
- Katz VL. Management of group B streptococcal disease in pregnancy. Clin Obstet Gynecol 1993;36(4):832-42.
- Tudela CM, Stewart RD, Roberts SW, Wendell GD. Intrapartum evidence of early-onset GBS. Obstet Gynecol 2012;119:626-9.
- Thomsen AC, Morup L, Hansen KB. Antibiotic Elimination of GBS in urine in prevention of preterm labor. Lancet 1982, Mar 14;591-3.
- Green DR, Galluzzi L, Kroemer G. Mitochondria and the Autophagy-inflammation-cell death axis. Science 2011;333:1109-11.
- McGregor JA, French JI, Richter R, et al. Cervico-vaginal microflora and pregnancy outcomes: results of a double-blind, placebo-controlled trial of erythromycin treatment. Am J Ob Gyn 1990;163:1580-91
 - Lee J, Romero R, Kim J-S, Topping V, et al. A signature of Maternal Anti-fetal Rejection in Spontaneous Preterm Birth: Chronic Chorioamnionitis, Anti-human Leukocyts Antigen Antibodies and C4d. PLOS One 2011.6.e16806

 - Cardenas I, Mor G, Lang SM, Stabach P, Sharp A, et al. Placental Viral Infection Sensitizes to Endotoxin-induced Preterm Labor: A Double-Hit Hypotheses. Am J Reprod Immunol 2011;65:110-7.
- Gozvacik D, Kimchi A. Autophagy and cell death. Curr Top Dev Biol 2007;78:217-45.
- Fuchs TA, Abed U. Novel Cell Death Program Leads to Neutrophil Extracellular Traps (NETS) J Cell Biol 2007;176:331-41.
- Edmond K, Zaidi A. New Approaches to Preventing Diagnosing and Treating Neonatal Sepsis. PLOS Med 2010.7.e1000213
- Sinha A, Lieut A, Paoletti LX, Weinstein MC. The projected health benefits of maternal GBS maternal vaccination in the era of chemoprophylaxis. Vaccine 23;3197-3195